一、基本信息
李好好,女,800cc全讯白菜网副教授,大数据统计方法与应用专业硕士生导师。2014年毕业于浙江大学运筹学与控制论专业,理学博士。担任美国数学评论评论员、浙江省自然科学基金评审专家、广东省高层次人材评审专家和中国运筹学会会员。
研究领域:运筹与优化,包括线性规划、非线性规划、组合优化、在线学习与在线优化。
主讲课程:《高等数学》《线性代数》《运筹学》《组合优化》等。
邮箱:hhli@zufe.edu.cn。
二、课题研究
[1] “区间线性系统的Farkas型定理研究”(项目编号:11701506),国家自然科学基金青年科学基金项目,2018.01-2020.12,主持;
[2] “两类保密排序问题的算法研究”(项目编号:11526184),国家自然科学基金数学天元基金项目,2016.01-2016.12,主持;
[3] “极大代数上一般区间线性系统解集特征研究”(项目编号:LY21A010021),浙江省自然科学基金一般面上项目,2021.01-2023.12,主持;
[4] “基于路径设计的居民雾霾健康成本测度及监管研究”(项目编号:16CTJ010),国家社会科学基金青年项目,2016.06-2019.6,3/5;
[5] “分散决策模式下的排序问题研究”(项目编号:11271324),国家自然科学基金面上项目,2013.01-2016.12,6/10;
[6] “《运筹学》线上线下混合式课程建设,2022白菜网总站大全教学项目,2022.5-2024.5,2/3.
三、主要论文
[1] Checking weak and strong optimality of the solution to interval convex quadratic programming in a general form, Optimization Letters, 2024.1, 18:339-364, SCI.
[2] 区间线性系统的区间解, 《系统科学与数学》, 2021.12, 41(12): 3395-3404, 北大核心.
[3] EA solutions and EA solvability to general interval linear systems, Linear and Multilinear Algebra, 2021.11, 69(15): 2865–2881, SCI.
[4] Weak optimal inverse problems of interval linear programming based on KKT conditions, Applied Mathematics-A Journal of Chinese Universities SERIES B, 2021.9, 36(3): 462-474, SCI.
[5] AE solutions to interval linear systems over max-plus algebra, Linear Algebra and its Applications, 2019.10, 578: 297-313, SCI.
[6] 有服务等级排序博弈问题的混合协调机制研究, 《系统科学与数学》, 2019.3, 39(3): 396-408, 北大核心.
[7] AE solutions to two-sided interval linear systems over max-plus algebra, Journal of Inequalities and Application, 2018, 291: 1-13, SCI.
[8] Farkas-type conditions of general interval linear systems for AE solvability, Linear Algebra and its Applications, 2017, 514: 208-221, SCI.
[9] Some properties of the lower bound of optimal values in interval convex quadratic programming, Optimization Letters, 2017, 11(7): 1443–1458. SCI.
[10] Some results on the upper bound of optimal values in interval convex quadratic programming, Journal of Computational and Applied Mathematics, 2016, 302: 38-49. SCI.
[11] Checking weak optimality of the solution to interval linear program in the general form, Optimization Letters, 2016, 10: 77-88, SCI.
[12] Necessary and sufficient conditions for unified optimality of interval linear program in the general form, Linear Algebra and its Applications, 2015, 484: 154-174, SCI.
[13] Farkas-type theorems for interval linear systems, Linear & Multilinear Algebra, 2015, 63: 1390–1400, SCI.
[14] Solvability and feasibility of interval linear equations and inequalities, Linear Algebra and its Applications, .2014, 463: 78–94, SCI.
[15] An interesting characteristic of phase-1 of dual–primal algorithm for linear programming, Optimization Methods and Software, 2014, 29(3): 497-502, SCI.
四、获奖荣誉
[1] 浙江省第十三届高校青年教师教学竞赛获二等奖.